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Abstract

The application of the network approach to the urban case poses several questions in terms of how to deal with metric

distances, what kind of graph representation to use, what kind of measures to investigate, how to deepen the correlation

between measures of the structure of the network and measures of the dynamics on the network, what are the possible

contributions from the GIS community. In this paper, the author considers six cases of urban street networks characterized

by different patterns and historical roots. The authors propose a representation of the street networks based firstly on a

primal graph, where intersections are turned into nodes and streets into edges. In a second step, a dual graph, where streets

are nodes and intersections are edges, is constructed by means of a generalization model named Intersection Continuity

Negotiation, which allows to acknowledge the continuity of streets over a plurality of edges. Finally, the authors address a

comparative study of some structural properties of the dual graphs, seeking significant similarities among clusters of cases.

A wide set of network analysis techniques are implemented over the dual graph: in particular the authors show that the

absence of any clue of assortativity differentiates urban street networks from other non-geographic systems and that most

of the considered networks have a broad degree distribution typical of scale-free networks and exhibit small-world

properties as well.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A large number of social, biological and man-made systems can be represented in the form of networks. For
instance the society is made by individuals connected by social interactions [1], while the cell functioning is
guaranteed by an intricate web of metabolites and chemical interactions. Equally, communication/
transportation critical infrastructure systems, as the Internet [2] or a subway system [3] can be modelled as
networks. The characterization of the topological properties of such networks has been the subject of a good
deal of attention in the recent literature [4]. A variety of different variables have been proposed and thanks to
the availability of powerful computers and large databases a huge number of networks from the real world
e front matter r 2006 Elsevier B.V. All rights reserved.
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have been studied over the last few years. The main result of this flurry of research has been that systems as
diverse as the Internet, the actors’ collaboration network, the protein–protein interactions, all share some
common properties. In fact it has been shown that most of the studied networks exhibit the small-world
property, meaning that in such networks the average topological distance between couples of nodes is small
compared to the size of the network (it increases only logarithmically with the system size), despite the fact
that the network has a large local clustering typical of regular lattices [5]. Moreover, it has been found that
most real-world networks are scale-free, i.e., are characterized by the presence of hubs, nodes with a degree
(number of connections) k much larger than the average value hki. The empirical evidences collected from the
analysis of both natural and man-created networks from the real world have shown in fact the presence
of a power-law behaviour in the degree distribution PðkÞ�k�g, with the exponent g varying between 2 and 3.
The fact that most of the nodes have a small number of links, while a few have an extremely large number
of connections, turns out to have extremely important consequences on the resilience of scale-free networks
to errors and attacks. The emerging of scaling in a complex network has been recognized as the sign that
the system is not static, but rather subject to incremental growth through time and preferential attachment [4].

The network approach has been widely used in urban studies. Since the early sixties, a bulk of research
has been spent trying to link the allocation of land uses to population growth through lines of transportation,
or seeking the prediction of traffic flows given several topological and geometric characteristics of
traffic channels, or eventually investigating the exchanges of goods and habits between settlements in the
geographic space even in historical eras. Most if not all these approaches have been based on a quite
simple, intuitive representation of networks which in short turns intersections (or settlements) into nodes
and roads (or lines of relationship) into edges. The resulting graph is named in the context of this paper a
primal graph. The primal approach took very soon the lead of network analysis implementations on
territorial cases probably because it was the most simple way to capture, along with the properties of
connectivity, one of the most crucial components of the geographic dimension: distance. As long as places are
points and relations are edges, a value of distance can be easily associated to edges themselves, eventually
interpreted as distance between places, which perfectly matches the ordinary, real-life experience of human
beings.

On the other hand, an opposite (or dual) representation happens to have sustained the by far most relevant,
if not the sole, specific contribution of urban design to the study of city networks. After the seminal work of
Hillier and Hanson [6] in the late eighties, Space Syntax has been developing a rather consistent application of
the network approach to cities, neighbourhoods, streets and even single buildings, establishing a significant
correlation between the topological accessibility of streets and phenomena as diverse as their popularity
(pedestrian and vehicular flows), human way-finding, safety against micro-criminality, micro-economic
vitality and social liveability [7]. Though not limited to ‘‘axial mapping’’, the core of the methodology is
grounded on that particular process, through which the direct representation of a city plan, where
intersections are nodes and streets are edges, is abandoned in favour of a dual representation, where streets are
nodes and intersections are edges. More in detail, the axial map of a city pattern is a map where each straight
space (‘‘line of sight’’ or ‘‘line of unobstructed movement’’) is represented by one single straight line, an ‘‘axial
line’’; then, in the derivate syntax ‘‘connectivity graph’’, each axial line is turned into one node, while each
intersection between any pair of axial lines is turned into one edge. At the end of the process, measures of
accessibility (namely ‘‘integration’’) are calculated over the connectivity graph on the basis of a topological,
non-Euclidean concept of distance (the so-called step-distance); finally, values of integration are represented
back into qualified axial map layouts, which are the outcome of the analysis process. Space Syntax has been
criticized for the largely subjective construction process of axial mapping [8], its sensitivity to the edge-effect,
as well as its difficulties to consistently explain some geometric configurations [9] its distance to real life
experience due to the abandonment of any reference to geographic-Euclidean space [10]. However, the
advantage of the dual step-distance approach is one that can make the difference: because streets are mapped
as nodes no matter their metric length, and because the intersections between every two streets are mapped as
edges, one can have many ‘‘conceptually countless’’ intersections for each street, which means many
‘‘conceptually countless’’ edges for each node in the dual graph. This makes the dual graph of a street network
comparable in its structure with most other networks where the degree K of a node is not dependent on the
availability of geographic space like systems recently investigated in society, biology and technology. That
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leads, for instance, to the recognition of scale-free behaviour for the degree distribution of urban street
networks, provided that they are represented with dual graphs [11].
2. Building the dual graph: the generalization of street segments and the Intersection Continuity Negotiation

(ICN) model

A key question in the dual representation of street patterns is that a principle can be found that allows to
extend the identity of a street over a plurality of edges; this problem can be referred to as one of finding a
‘‘generalization model’’. A generalization model is a process of complexity reduction used by cartographers
while reducing the scale of a map; as for the street network, it is a two-steps process: firstly, single street
segments are merged into longer ‘‘strokes’’; secondly, those strokes are selected by ‘‘importance’’ for map
visualization [12]. In this context, the first step is relevant as it is about seeking a principle of continuity among
different streets/edges, in order to capture the real sense of unity, or unique identity, of an urban street
throughout a number of intersections. The question has been solved in Space Syntax substituting the primal
graph representation of the network with the axial map ‘‘not properly a graph’’ where the principle of
continuity is the linearity of the street spaces (Fig. 1A). After a first attempt to anchor the representation of
street patterns to an actual primal graph, based on characteristic nodes and visibility [8], Jiang and Claramunt
have recently proposed one relevant model that builds a proper dual approach on a different primal
representation [13]: under their ‘‘named-street approach’’ (Fig. 1B) the principle of continuity is the street
Fig. 1. Row A: the Space Syntax way: (1) A fictive urban system; its (2) primal axial map network model; and its (3) dual connectivity

graph, after Ref. [6]. Row B: the named street way (street names replaced by numbers): (1) A fictive urban system; its (2) primal network

model; and its (3) dual connectivity graph after Ref. [13]. Row C: the ICN way (street names replaced by numbers): (1) A fictive urban

system; its (2) primal graph; and its (3) dual connectivity graph. In this latter proposal, the direct representation of the urban network is

properly a graph, where intersections are turned into nodes and street arcs into edges; edges follow the footprint of real mapped streets (a

linear discontinuity does not generate a vertex); the ICN process assigns the concatenation of street identities throughout nodes following

a principle of ‘‘good continuation’’ [12].
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name: two different arcs of the original street network are assigned the same street identity if they share the
same street name.

The main problem with this approach is that it introduces a nominalistic component in a pure spatial
context, resulting in a loss of coherence of the process as a whole: street names are not always meaningful in
any sense, they are not always reliable as the same street may be termed in different ways by different social
groups, or in different contexts, at different scales, in different ages. Other problems are that street name
databases are not easily available for all cases or at all scales, and that the process of embedding and updating
street names into GIS seems rather costly for large datasets. However, implemented by Jiang and Claramunt
on three real cases, the named-street approach has led to recognize a small-world character in large street
networks, but no scale-free behaviour in their degree distribution. In this work we use a generalization model
based on a different principle of continuity, one of ‘‘good continuation’’ [12], based on the preference to go
straight at intersections, a well known cognitive property of human wayfinding [14,15]. The model, which we
term ICN is quite simple and purely spatial, in that it excludes anything that cannot be derived by the sole
geometric analysis of the primal graph itself (Fig. 1).

The model runs in three steps:
(1)
 All the nodes are examined in turn. At each node, the continuity of street identity is negotiated among all
pairs of incident edges: the two edges forming the largest convex angle are assigned the highest continuity
and are coupled together; the two edge with the second largest convex angle are assigned the second largest
continuity and are coupled together, and so forth; in nodes with an odd number of edges, the remaining
edge is given the lowest continuity value.
(2)
 Beginning with one edge chosen at random in the graph, a street ID code is assigned to the edge and, at
relevant intersections, to the adjacent edges coupled in step 1.
(3)
 The dual graph is constructed by mapping edges coded with the same street ID in the primal graph into
nodes of the dual graph, and intersections among each pair of edges in the primal graph into edges
connecting the corresponding nodes of the dual graph. Overlaying double edges in the dual graphs are
eliminated. Being based on a primal graph, ICN minimizes subjectivity and re-enter the mainstream of the
network representation of urban and territorial patterns. Being based on a pure spatial principle of
continuity, it avoids problems of social interpretation within a pure spatial context. Finally, it allows a
dual, step-distance representation of urban street networks linking it to a primal graph, which opens to
further investigations in geographic-Euclidean space [16].
3. Characterizing the topological properties of a network

A network can be represented as a graph G, a mathematical entity defined by a set of N elements called
nodes or vertices, and by a set of K unordered pairs of different nodes, called links or edges. In the following a
vertex will be referred to by its order i in the set of vertices ð1pipNÞ. If there is an edge between nodes i and j,
the edge being indicated as ði; jÞ, the two nodes are said to be adjacent or connected. A graph G can be
described by the adjacency matrix A ¼ faijg, a N �N square matrix whose element aij is equal to 1 if (i; j)
belongs to the set of links, and zero otherwise. In this section we present a list of the measures useful to
characterize a graph and of the features that have been observed in real-world networks.

3.1. Degree and degree distribution: scale-free networks

The degree of a node is the number of edges incident with the node, i.e., the number of first neighbours of
the node. The degree ki of node i is defined as ki ¼

P
j2G aij . The average degree is hki ¼ 1=N

P
i2G ki ¼ 2K=N.

Not all vertices in a network have the same number of edge. The way the degree is distributed among the
nodes is an important property of a network that can be investigated by calculating the degree distribution
PðkÞ, i.e., the probability of finding nodes with k links. The degree distribution is defined as PðkÞ ¼ NðkÞ=N,
where NðkÞ is the number of nodes with k links. The study of a large number of complex systems, including
man-made networks as the World Wide Web and the Internet [2], social networks, as the movie actors
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collaboration network or networks of sexual contacts [17], and biological networks [4], has shown that in most
of the real systems the degree distribution follows a power law for large k:

PðkÞ�NðkÞ�k�g (1)

with the exponent g being between 2 and 3. Networks with such a degree distribution are called scale-free [4].
The results found are in contrast with what expected for random graphs [18]. In fact, a random graph with N

nodes and K edges (an average of hki ¼ 2K=N per node), i.e., a graph obtained by randomly selecting the K

couples of nodes to be the connected, exhibits a binomial degree distribution centred at hki.

3.2. Degree correlations: assortative and disassortative mixing

The correlation between the degree of connected vertices can be quantified by considering knnðkÞ, i.e., the
average degree of nearest neighbours of vertices with degree k [19]. Such a quantity is a constant as a function
of k if there are no correlations. If knnðkÞ is an increasing function of k, vertices with low k are connected to
vertices with low k and vertices with high k are connected to vertices with high k. This property is referred in
social science as assortative mixing, while a decreasing knnðkÞ as a function of k is named disassortative mixing.

3.3. Characteristic path length

Social networks are historically the first complex networks explored. In one of the most famous experiments on
social systems, Stanley Milgram asked a group of people, randomly selected in Omaha (Nebraska), to direct letters
to a distant target person in Boston (Massachusetts). Letters had to be forwarded by an individual to a single
personal acquaintance, thought to be closer to the final recipient. The experiment showed that the average number
of steps from the sender to the final recipient, i.e., the acquaintance chain length, was only about six [20]. This
phenomenon is often referred to as ‘‘six degrees of separation’’. Analysis on other networks has shown similar
properties: in most real-world networks it is possible to reach a node from another one, going through a number of
edges that is small if compared to the total number of existing nodes in the system. The typical separation between
two generic nodes in a graph G, can be measured by the characteristic path length L defined as [5]:

LðGÞ ¼
1

NðN � 1Þ

X

i;j2G;iaj

dij. (2)

In this formula, dij is the length of the shortest path between nodes i and j, i.e., the minimum number of edges
covered in order to go from i to j.

3.4. Clustering coefficient

Clustering is a property found in many real-world networks. For instance, in social systems there is a high
probability that two individuals linked by an acquaintance have a third acquaintance in common. Such
tendency can be measured by the clustering coefficient C. For each node i of G, we consider the subgraph Gi of
its first neighbours, that is obtained in two steps: (1) extracting i and its first neighbours from G; (2) removing
the node i and all the incident edges. If node i has ki neighbours, then Gi will have ki nodes and at most
kiðki � 1Þ=2 edges. Ci is proportional to the fraction of these edges that really exist, and measures the local
group cohesiveness of vertex i. C is the average of Ci calculated over all nodes:

CðGÞ ¼ hCii ¼
1

N

X

i2G

Ci, (3)

where

Ci ¼
2ei

kiðki � 1Þ
¼

P
j;m aijajmami

kiðki � 1Þ
, (4)

where ei is the number of edges in Gi. By definition C, takes values in the interval [0,1]. It is important to notice
that C is related to the number of triangles present on the network [4]. A more detailed description of the
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network can be obtained by plotting how Ci is distributed among the nodes of the network [13]. For instance,
important information can be extracted by considering CðkÞ, the average clustering coefficient restricted to
classes of vertices of degree k. In many cases CðkÞ exhibits a power law decay as a function of k, i.e., a
hierarchy with low degree vertices belonging to well interconnected communities and hubs connecting many
vertices not directly connected between each other. Various other measures to quantify the degree of clustering
have been proposed over the years [1]. Of particular relevance the generalization of the clustering coefficient C

recently proposed to consider not only the immediate neighbouring nodes: the k-clustering coefficient Ck

measures to which extent the k-neighbours of a given node are interconnected with each other [13].

3.5. Global and local efficiency

The global efficiency Eglob is a measure of how well the nodes communicate over the network [21,22]. The
efficiency �ij in the communication between node i and j is assumed to be inversely proportional to the shortest
path length, i.e., �ij ¼ 1=dij. In the case G is non-connected and there is no path linking i and j, it is assumed
dij ¼ þ1 and, consistently, �ij ¼ 0. The global efficiency of a graph G is defined as the average of �ij over all
the couples of nodes [21,22]:

E ¼
1

NðN � 1Þ

X

i;j2G;iaj

�ij ¼
1

NðN � 1Þ

X

i;j2G;iaj

1

dij

. (5)

By definition Eglob takes values in the interval [0,1], is equal to 1 for the complete graph, and is correlated to
1=L (a high characteristic path length corresponds to a low efficiency). Consistently with the global analysis,
we can measure the clustering properties of a graph by using the same measure, the efficiency, at the local level.
The local efficiency is defined as [21,22]:

ElocðGÞ ¼
1

N

X

i2G

EðGiÞ; EðGiÞ ¼
1

kiðki � 1Þ

X

l;m2G;lam

1

d 0lm
, (6)

where d 0lm is the shortest path length between node l and m, calculated in the subgraph Gi. A complex system
can be therefore analyzed both at global and local scale by means of a single variable, the efficiency. As for
Eglob, also Eloc is already normalized for topological graphs.

3.6. Small-world networks

Random graphs have a characteristic path length L that grows only logarithmically with N, and a clustering
coefficient C ¼ hki=N going to zero for large N. Conversely, a regular lattice has a finite clustering coefficient
and a characteristic path length L which grows linearly with N. Watts and Strogatz have shown that many
real-world networks have properties intermediate between random graphs and regular lattice. In fact, all such
networks, that have been named ‘‘small worlds’’ have at the same time: (1) a small characteristic path length as
random graphs; (2) a large clustering coefficient, typical of regular lattices. To check whether a network is a
small world it has been proposed to compare the value of L and C with those obtained for the randomized
version of the network, i.e., for a network with the same N and K and in which the edges are randomly
distributed, with a uniform probability, among all the nodes [5]. In a small-world network L�Lrand and
CbCrand . An alternative definition of small worlds is based on the concept of network efficiency. Since a small
characteristic path length indicates that the system is efficient on a global scale, and high clustering means that
the network is efficient on a local scale, a small world is defined by having Eglob�ðEglobÞrand and ElocbðElocÞrand ,
i.e., is a network in which the nodes communicate efficiently both at the global and at a local scale. It is
important to notice that the notion of small world can be given a more precise meaning concerning the global
properties. In fact, the logarithmic scaling of L as a function of the size is a precise way to characterize the
small-world global property in growing network processes, where there is a meaningful range of systems sizes.
More recently, Csanyi and Szendroi have proposed an alternative method valid for fixed networks as well.
Denoting by NiðrÞ the number of nodes of the graph that can be reached from i in at most r steps, a small-
world network will obey the scaling NiðrÞ�ear. So it is sufficient to check whether hNðrÞi ¼ 1=N

P
i2G NiðrÞ,
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i.e., NiðrÞ averaged over all the nodes of the graph, grows linearly as a function of r in a linear-log scale to
prove that the network scales as a small world [23]. Conversely, in many networks with strong geographical
constraints, it has been found that hNðrÞi�rd , which is the network discrete analogue of fractal scaling [23].
4. The 1-square mile project: comparative analysis of the topology of six urban street networks

In this chapter we study some topological properties of six 1-square mile samples taken from different world
cities. Drawing from a previous work of Allan Jacobs [24] we have selected six samples of urban patterns from
different cities, also different in terms of structure, history and character; then we have imported them into
GIS and firstly represented them as primal graphs (Fig. 2, below); in so doing, we have turned intersections
into nodes and streets into edges. Secondly, we have run the ICN generalisation model coding edges into
generalized streets; thirdly we have developed the dual graphs mapping generalized streets as nodes and
intersections as edges (Fig. 3); finally, we have measured and compared the mentioned topological properties
of the resulting dual graphs.

Among cases, Ahmedabad, Venezia and Wien are historical, dense, mixed-use, windy fabrics originated by
an incremental addition of urban materials across a long period of time, while Barcelona and San Francisco
(grid-iron), and Walnut Creek (‘‘lollipops’’) are modern patterns built in a relatively short period of time on
the basis of one single plan. Thus, the selection of cases has been oriented to the discussion of the kind of order
that emerges, though often not visible at a first glance, through an ‘‘organic’’ fine-grained growth out of the
control of any central agency, as opposed to the immediately visible Euclidean order showed in the case of
most master-planned communities.

A first difference among cases is simply related to the number of streets and intersections. The dual graphs
of cities are mapped in Fig. 3, while the number of streets and intersections are presented in Table 1: for
instance, Ahmedabad has N ¼ 1235 and K ¼ 2705, while San Francisco has just N ¼ 34 and K ¼ 137,
meaning that in the same space of 1 square mile we found 1235 streets in Ahmedabad and only 34 streets in
San Francisco. On the other hand, if we compare hki, the average number of intersections per street (also
reported in table), we find this value higher for Barcelona and San Francisco, respectively, equal to about 6
and 8: that seems to be related to the grid-like structure of these two cities, which provides longer streets with
more intersections. If we consider kmax, the degree of the street with the highest number of intersections, we
find that it is much larger than hki in each of the six city considered, which is a clue of the large diversity of the
nodes with respect to the number of intersections. In each case there are nodes with a small number of links
but also a few nodes with an extremely large number of links. In some cases kmax can be a consistent
proportion of the total number of nodes of the graph: for instance in San Francisco (Fig. 4), another grid-like
case, we have found one street intersecting 21 other streets out of the 34 of the dual graph as a whole, a degree
coverage of about the 62%. The heterogeneity in the node degree can be better evidenced by plotting NðkÞ, the
number of nodes with k links, as a function of k (see Fig. 5). We have preferred to plot such a quantity instead
of PðkÞ to remind the reader that the graphs considered have a wide different number of nodes N. All the
reported distributions show the presence of long tails. A scale-free behaviour is clearly emerging in all graphs
with a significant size, like Ahmedabad, Venezia and Wien. In the case of Ahmedabad, the graph with the
largest number of nodes, we have fitted the distribution with a power law (the straight line reported in Fig. 5)
extracting an exponent g ¼ 2:5� 0:1. The same distribution cannot be fitted by an exponential or a binomial
curve typical of random graphs. It should not be forgotten that all considered graphs are an expression of real
street networks, all included in a 1 square mile boundary. Thus, though not meaningful in statistical terms, the
small size of some graphs is here highly significant in urban terms, as it witnesses that some cities (i.e., the
planned San Francisco, Barcelona and Walnut Creek) are patterned so that 1 square mile is simply too small
to let any order emerge, while for others (namely the incrementally grown Ahmedabad, Venezia and Wien) the
same amount of city is quite enough. That may tell a lot of a city, when issues of walkability, community
cohesion and proxemic behaviours are at stake. Therefore, although a clear sign of the scale-free behaviour
can be observed in large graphs only, there are a series of important indications that can be drawn from Fig. 5
also for small cities. For instance, the peak in NðkÞ observed, respectively, for Barcelona around k ¼ 12, and
for San Francisco at k ¼ 7, are fingerprints of the grid-like structure of these two urban patterns.
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Fig. 2. The six 1-square mile samples of urban patterns (above) and their primal graphs (below): 1. Ahmedabad; 2. Barcelona; 3. San

Francisco; 4. Venezia; 5. Wien; 6. Walnut Creek. Cities are so diverse that, at a first sight, it seems hard to imagine that they share any

common, though hidden, pattern, which is what they actually do.

S. Porta et al. / Physica A 369 (2006) 853–866860
A tendency toward a common, though not immediately evident order, clearly emerges in fine-graned,
incrementally grown cities like Ahmedabad, Venezia and Wien, that correlates streets with their degree, thus
the number of other streets intersected. Many streets intersect few other streets while a restricted number of
‘‘rich’’ streets do intersect a large number of other streets. In the case of Venezia for instance (Fig. 6), within
the upper 20% interval of the degree range of values we find just 4 out of 783 streets (0:5%, thick-black in the
figure), while within the lower 20% we find some 674 (86:1%, thin-grey).

But how rich are streets intersected by the richer? An important information can be obtained by plotting
knnðkÞ, the average degree of nearest neighbours of vertices with degree k. Such a plot can tell us if there are
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Table 1

The basic characteristic of the dual graphs obtained for the six 1-square mile urban patterns considered

Case N K hki KMAX

1. Ahmedabad 1239 2709 4.37 68

2. Barcelona 53 168 6.34 15

3. San Francisco 34 137 8.06 21

4. Venezia 783 1312 3.35 29

5. Wien 170 395 4.65 35

6. Walnut Creek 78 107 2.74 13

We report the number of nodes (streets) N, the number of edges (intersections) K, the average number of edges per node hki, and the

largest degree kmax.

Fig. 3. The dual graphs of the six cities, shown in the same order of Fig. 2.

Fig. 4. The ‘‘richest’’ street (thick line) of the case from San Francisco intersects 21 out of the 34 streets of the whole case. This

corresponds to a degree coverage of 62% and is mainly due to the grid-like structure of San Francisco urban pattern.

S. Porta et al. / Physica A 369 (2006) 853–866 861
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Fig. 5. Degree distribution of the six graphs. A scale-free behaviour is clearly emerging in graphs with a significant size like in the case of

Ahmedabad: the fit reported has been obtained with a power law NðkÞ�k�g with an exponent g ¼ 2:5� 0:1. Since graphs are all an

expression of real street networks, all included in a 1 square mile boundary, the small size of some graphs is here evident, so that in those

cases (namely San Francisco, Barcelona and Walnut Creek) statistics does not allow to draw any precise conclusion on the presence or

absence of a scale-free structure. Nevertheless in all the case considered the degree distribution are largely skewed.

Fig. 6. Venezia is a good example of the disproportionate distribution of its 1312 intersections across its 783 streets: in the interval of the

upper 20% of intersections per street we find just four streets (thick, black lines), while in the lower 20% we find 674 (thin, grey lines), over

the 85% of all streets. The distribution is far from random: it clearly tends to a power law (see Fig. 5).

S. Porta et al. / Physica A 369 (2006) 853–866862
correlations between the degree of connected vertices. In Fig. 7 we observe that both Venezia and Wien show a
visible tendency to disassortativity. In general, assortative mixing, that is typical of many social systems, is not
detected in any of the six urban networks here considered. Such a result is probably related to a principle of
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Fig. 7. A tendency to disassortativity emerges in Venezia and Wien in this plot of knnðkÞ, the average degree of nearest neighbours of

vertices with degree k. In general, the absence of any clue of assortativity in all six cases, with the exception of San Francisco, differentiates

street networks from other non geographic systems.

Table 2

Characteristic path lengths L and clustering coefficients C of the dual graphs obtained for the six 1-square mile urban patterns considered

Case L Lrand C Crand

1. Ahmedabad 5.20 4.81 0.250 0.003

2. Barcelona 2.68 2.31 0.124 0.120

3. San Francisco 2.13 1.86 0.067 0.240

4. Venezia 8.36 5.20 0.174 0.004

5. Wien 3.48 3.44 0.175 0.025

6. Walnut Creek 3.96 3.44 0.062 0.026

The values obtained are compared with those for random graphs with the same size and number of links.
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hierarchy which drives rich streets to ‘‘order’’ the urban pattern at the local level: to have many rich streets
intersecting each other would lead to a waste of land and financial resources, for one single ‘‘main street’’ can
easily and rather successfully connect the most of an urban district. The only notable exception to this rule
seems to be San Francisco, a case in which we observe, for k smaller than 7, an increasing knn as a function of
k. In particular, the peak at k ¼ 7 is due to the fact that in the 1-square mile sample of San Francesco there is a
large number of streets with k ¼ 7, namely the vertical streets, all of them intersecting the horizontal street
with the largest degree k ¼ 21 (see Fig. 4).

We now turn to evaluate if the dual graphs of the six urban 1-square mile cases are small worlds. We will
show that small-world properties clearly emerge in most cases; however, exceptions should be made for
networks with few triangular loops.

We calculated the average path length and the clustering coefficient of the six networks, and the results,
Table 2, are compared with those obtained for random graphs with the same number of nodes and links. The
networks have a small average path length, smaller than 6 in all the cases considered, Venezia excepted. This
indicates that, on average, any two streets on a 1-square mile are only few streets apart. The average distance is
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particularly small for the dual graphs obtained from grid-like urban patterns (Barcelona and San Francisco).
For instance, in San Francisco, any two streets can be connected in just two steps, i.e., with only one
intermediate street. In addition, four of the networks considered, namely Ahmedabad, Venezia, Wien and
Walnut Creek, have CbCrand , and are therefore small worlds. Conversely, Barcelona has a clustering
coefficient C of the same size of Crand , while San Francisco has a clustering coefficient which is even much
smaller than Crand . This is due to the fact that, as originally defined, the clustering coefficient C is a measure
that is related only to the number of triangles present in the network (see Section 3.4). In the case of San
Francisco such a number is extremely small because of the grid-like structure of the city. As an example
consider, for instance, that a city with a perfect square-lattice structure would be mapped into a dual graph
with no triangles at all. Similar results can be obtained by computing the network global and local efficiency
(Table 3). All networks result efficient both at the global and local level with the exception of Barcelona and
San Francisco, two cases in which, the absence of triangles, affects the value of Eloc. These findings, on one
hand, imply that the dual networks of Barcelona and San Francisco are not small-worlds, at least according to
the usual definition [5,21], since they do not exhibit local clustering as evidenced by the values of C and Eloc.
On the other hand, what we have found means that if we want to better capture and measure the local
properties of a network we may need a better definition of C [13] and Eloc, especially for such systems with a
small number of triangles.

Concerning the global properties of the network, we have implemented the procedure proposed by Csanyi
and Szendroi [23] to assess for the validity of the small-world scaling. Namely, we have calculated hNðrÞi, the
average number of nodes of the graph that can be reached from a generic starting node in at most r steps. In
Fig. 8 we report the results obtained for the two largest cities, Ahmedabad and Venezia. Although the size of
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Fig. 8. Average number of nodes that can be reached from a generic starting node in at most r steps as a function of r. We report the

results for the two largest graphs, namely Ahmedabad (circles) and Venezia (diamonds). For small values of r the two curves are better

fitted by power laws (reported as straight lines) rather than exponentials.

Table 3

Global and local efficiency of the dual graphs obtained for the six 1-square mile urban patterns considered

Case Eglob ðEglobÞrand Eloc ðElocÞrand

1. Ahmedabad 0.21 0.21 0.281 0.003

2. Barcelona 0.45 0.49 0.144 0.154

3. San Francisco 0.57 0.60 0.070 0.400

4. Venezia 0.15 0.18 0.191 0.004

5. Wien 0.33 0.32 0.206 0.026

6. Walnut Creek 0.30 0.25 0.067 0.026

The values obtained are compared with those for random graphs with the same size and number of links.
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Fig. 9. Average clustering coefficient restricted to classes of vertices of degree k for the six graphs considered (same order as in Fig. 5). As

for the degree (number of intersected streets), also CðkÞ is distributed according to a power-law. The continuous lines in figures are the fit

obtained with a power law.
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the networks does not allow to draw a definitive conclusion, we have plotted the results in figure in a log–log
scale because the fractal scaling hNðrÞi�rd seems to be better verified than the small-world scaling hNðrÞi�ear.
This finding, confirmed also in networks with a larger number of nodes, could that indicate the dual graphs
still retain some of the geographical constraints of the primal graphs. As a final step we have investigated the
distribution of the node clustering coefficients Ci. The clustering coefficient Ci of node i (see Section 3.4) has a
twofold meaning: on one hand, it tells how cohesive is the cluster of i’s first neighbours in terms of their
reciprocal relationships; on the other hand, it expresses how critical is i to achieve a direct relationship among
all its first neighbours. The latter meaning is specifically inherent the urban case, for it embeds the relevance of
one street in terms of its ability to provide a direct link among all the intersecting ‘‘secondary’’ streets: the
lower Ci, the higher the relevance (or ‘‘criticality’’). In particular, we have focused our attention on CðkÞ, the
average clustering coefficient restricted to classes of vertices of degree k. The results are reported in Fig. 9. The
same principle of hierarchy previously observed in the degree distributions and correlations, can now be found
in the distribution of CðkÞ. In fact, in most of the cases, CðkÞ exhibits a power law decay as a function of k (see
continuous line in Fig. 9 i.e., a hierarchy similar to that revealed for other non geographic networks [25], with
low degree vertices belonging to well interconnected communities and hubs connecting many vertices not
directly connected between each other. As such, the figure shows a principle of hierarchy emerging ‘‘at
different ‘‘speeds’’ for the different cities’’ with the growth of the number of intersections per street: streets
with a higher number of intersections tend to be more critical to the local connectivity of their neighbourhood.

5. Conclusions

A comparison between primal and dual graph representations of urban street networks has been addressed.
An ICN generalization model has been implemented in order to manage the passage from the primal to the
dual: like other models, ICN leads to the loss of any reference to geographic distance, but unlike other models
it is purely spatial. Power law behaviors have been found especially evident in urban street networks of
significant size, with reference to the degree distribution and the average clustering coefficient restricted to
classes of vertices of degree k. By considering the average degree of nearest neighbours of vertices with degree
k, a tendency to degree disassortativity emerges in Venezia and Wien. However, the absence of any clue of



ARTICLE IN PRESS
S. Porta et al. / Physica A 369 (2006) 853–866866
assortativity in all cases differentiates urban street networks, in this dual representation, from other non-
geographic systems, and tells a lot about the hierarchical order that underpins the urban structure, where main
(or highly connected) streets are more likely to connect with secondary (or low connected) streets than to
streets of the same hierarchical level. Small-world properties have been found emerging as a general rule
throughout all cases, with the exception of networks characterized by a low number of triangular loops.
However, a definitive conclusion about the small-world scaling should wait further investigations of larger
datasets: the one square mile rule that we adopted in building the case studies, in fact, while allowing a better
comparison among well characterized and self-consistent samples of urban fabrics, on the other hand may
limit the reliability of statistical considerations especially for lower size cases. Along with these similarities,
striking differences have been detected across cases in terms of their simple size: it is amazing how different can
urban networks be within the same amount of territorial surface (one square mile). Beside the gap in terms of
number of nodes and edges (streets and intersections), smaller networks do exhibit a less obvious though much
more relevant feature: in these smaller, less fine-grained cases, like Walnut Creek, Barcelona and San
Francisco, it seems that there is simply not enough city in one square mile to make any sense in terms of
structural order, i.e., both in terms of power law degree distribution and small-world properties. This latter
achievement offers a new argument to the long-term debate about density and sustainability in urban
planning. As a final consideration, this study along with our works on centrality extended to the primal
representation [16,26], shows the advantages of a complex network approach to the urban street networks as
opposed to the space syntax formalism.
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